Tetrahedron Letters, Vol.26, No.17, pp 2129-2130, 1985 0040-4039/85 \$3.00 + .00 Printed in Great Britain ©1985 Pergamon Press Ltd.

CHIRAL PROPIONATE ENOLATE EQUIVALENT FOR STEREOSELECTIVE ADDITIONS TO SYMMETRICAL KETONES

Philip W. Ambler and Stephen G. Davies,*

The Dyson Perrins Laboratory, South Parks Road, Oxford, OX1 3QY.

Summary: The copper enolate derived from $(n^5-c_5H_5)Fe(CO)(PPh_3)COCH_2CH_3$ reacts stereoselectively with symmetrical ketones to generate RR.SS- α -methyl- β -hydroxy acyl complexes which on decomplexation liberate the corresponding β -hydroxy acids.

In the preceding paper we have demonstrated that the E-aluminium and copper enolates derived from $(\eta^5-c_5H_5)Fe(CO)(PPh_3)COCH_2CH_3 \ 1$ react stereoselectively with aldehydes to give α -methyl- β -hydroxy acyl complexes. In these reactions both the aluminium and copper enolates exhibit the same control over the stereochemistry at the α -centre relative to the chiral iron centre but complementary control over the β -centre and thus after decomplexation yield threo- and erythro- α -methyl- β -hydroxy acids respectively. The lithium enolate 2 derived from 1 showed little stereoselectivity at either the α or β centres on reaction with aldehydes. We report here that the copper enolate derived from 1 adds stereoselectively to symmetrical ketones (R₂CO) to produce the complexes RR,SS-($\eta^5-c_5H_5$)Fe(CO)(PPh_3)COCH(CH₃)-C(OH)R₂ 3 which on decomplexation liberate the corresponding β -hydroxy acids 5.

Addition of symmetrical ketones to the lithium enolate 2 at -78⁰C shows little stereoselectivity and gives only low yields of the β -hydroxy acyl complexes 3 and 4 (Table), the major product being recovered starting acyl complex 1 arising from deprotonation of the ketones. Addition of $SnCl_2$, $ZnCl_2$ or BF_3 to the lithium enolate 2 prior to addition of the ketones completely suppressed formation of 3 and 4 with only 1 being isolated. Addition of Et₂AlCl to 2_{1} , warming to -40[°]C (2 hrs) and subsequent addition of the ketones at -78[°]C gave high yields of 3 and 4 but little change in stereoselectivity compared to the lithium enolate 2. Addition of the lithium enolate 2 to 1 equivalent of anhydrous CuCN at -78° C and warming to -40° C for 2 hrs prior to addition of the ketones at -40° C showed a high stereoselective preference for formation of 3 together with good isolated yields (Table). The relative configuration of the α -centre to the iron centre was assigned as described previously.¹ The observed stereoselectivities can only be achieved with strictly 1 equivalent of CuCN and formation of the copper enolate appears to be suppressed if small amounts of free $Ph_{3}P$ are present. Lower temperatures increase the stereoselectivities but are detrimental to the yields. The observed stereoselectivities correlate with the size of R in the ketones R_2 CO; the smaller the effective size of R the better the selectivity.

2129

Table: Stereoselectivities (ratio $\underline{3} : \underline{4}$) observed in the addition of R_2CO to the lithium $\underline{2}$ and copper enolates derived from $(\eta^5 - C_5H_5)Fe(CO)(PPh_3)COCH_2CH_3 \underline{1}$.

R2 ⁰	:0	Ĩ	\checkmark		°.	ľ
Li1 (-7	thium enclate 78 ⁰ C)	3:1	2:1	4:1	6:1	2:1
Cor (-4	oper enolate 40 ⁰ C)(Yields [†])	>40 : 1 (61%)	2 : 1 (35%)	^{>} 60 : 1 (71%)	>30 : 1 (84%)	10 : 1 (68%)
[†] isolated	but unoptimised	ł				

Oxidative decomplexation as described previously generates the corresponding α -methyl- β -hydroxy acids 5 in good yields.² The stereoselective preference for formation of 3 rather than 4 is consistent with addition of the ketones to the unprotected face of the enolate in the anti (0 to CO) conformation.³ The addition of these chiral propionate enolate equivalents to unsymmetrical ketones is currently under investigation.

References

- 1. S.G. Davies, I.M. Dordor, J.C. Walker and P. Warner, <u>Tetrahedron Letters</u>, 1984, 2709.
- S.G. Davies, I.M. Dordor-Hedgecock, P. Warner, R.H. Jones and K. Prout, <u>J. Organometal</u>. Chem., 1985, in press.
- 3. S.G. Davies and J.I. Seeman, Tetrahedron Letters, 1984, 1845.

(Received in UK 15 February 1985)